
Third Semester B.E. Degree Examination, June/July 2019

Engineering Mathematics - III

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain the Fourier series for the function:
$f(x)=\left\{\begin{aligned}-\pi & \text { in }-\pi<x<0 \\ x & \text { in } 0<x<\pi\end{aligned}\right.$
Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$.
(08 Marks)
b. Express y as a Fourier series up to the second harmonics, given :

x	0	$\pi / 3$	$2 \pi / 3$	π	$4 \pi / 3$	$5 \pi / 3$	2π
y	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

(08 Marks)
OR
2 a. Obtain the Fourier series for the function $f(x)=2 x-x^{2}$ in $0 \leq x \leq 2$.
(08 Marks)
b. Obtain the constant term and the first two coefficients in the only Fourier cosine series for given data :

x	0	1	2	3	4	5
y	4	8	15	7	6	2

(08 Marks)
Module-2
3 a. Find the Fourier transform of $\mathrm{xe}^{-|x|}$.
(06 Marks)
b. Find the Fourier sine transform of $\frac{e^{-a x}}{x}, a>0$.
c. Obtain the $z-$ transform of $\sin n \theta$ and $\cos n \theta$.
(05 Marks)

OR

4 a. Find the inverse cosine transform of $F(\alpha)=\left\{\begin{array}{cc}1-\alpha, & 0 \leq \alpha \leq 1 \\ 0, & \alpha>1\end{array}\right.$
Hence evaluate $\int_{0}^{\infty} \frac{\sin ^{2 t}}{t^{2}} \mathrm{dt}$. (06 Marks)
b. Find inverse $Z-$ transform of $\frac{3 z^{2}+2 z}{(5 z-1)(5 z+2)}$
(05 Marks)
c. Solve the difference equation $y_{n+2}+6 y_{n+1}+9 y l=2^{n}$ with $y_{0}=0, y_{1}=0$, using z - transforms.

Module-3
5 a. Find the lines of regression and the coefficient of correlation for the data :

x	1	2	3	4	5	6	7
y	9	8	10	12	11	13	14

(06 Marks)
b. Fit a second degree polynomial to the data :

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

(05 Marks)
c. Find the real root of the equation $\mathrm{x} \sin \mathrm{x}+\cos \mathrm{x}=0$ near $\mathrm{x}=\pi$, by using Newton - Raphson method upto four decimal places.
(05 Marks)

OR

6 a. In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as $4 x-5 y+33=0$ and $20 x-9 y=107$ respectively. Calculate \bar{x}, \bar{y} and the coefficient of correlation between x and y.
(06 Marks)
b. Fit a curve of the type $y=a e^{b x}$ to the data :

x	5	15	20	30	35	40
y	10	14	25	40	50	62

(05 Marks)
c. Solve $\cos x=3 x-1$ by using Regula - Falsi method correct upto three decimal places, (Carryout two approximations).
(05 Marks)

Module-4

7 a. Give $f(40)=184, f(50)=204, f(60)=226, f(70)=250, f(80)=276, f(90)=304$. Find $f(38)$ using Newton's forward interpolation formula.
(06 Marks)
b. Find the interpolating polynomial for the data:

x	0	1	2	5
y	2	3	12	147

By using Lagrange's interpolating formula.
(05 Marks)
c. Use Simpson's $\frac{3}{8}$ th rule to evaluate $\int_{0}^{03}\left(1-8 x^{3}\right)^{1 / 2} d x$ considering 3 equal intervals.
(05 Marks)

OR

8 a. The area of a circle (A) corresponding to diameter (D) is given below :

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105 , using an appropriate interpolation formula.
(06 Marks)
b. Given the values :

x	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202

Evaluate $f(9)$ using Newton's divided difference formula.
(05 Marks)
c. Evaluate $\int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Weddle's rule taking seven ordinates.
(05 Marks)

Module-5

9
a. Using Green's theorem, evaluate $\int_{\mathrm{C}}\left(2 \mathrm{x}^{2}-\mathrm{y}^{2}\right) \mathrm{dx}+\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \mathrm{dy}$ where C is the triangle formed by the lines $x=0, y=0$ and $x+y=1$.
(06 Marks)
b. Verify Stoke's theorem for $\vec{f}=(2 x-y) i-y z^{2} j-y^{2} z k$ for the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$.
(05 Marks)
c. Find the extermal of the functional $\int_{x_{1}}^{x_{2}}\left\{y^{2}+\left(y^{1}\right)^{2}+2 y e^{x}\right\} d x$.
(05 Marks)

OR

10 a. Using Gauss divergence theorem, evaluate $\int_{S} \vec{f} \cdot \hat{n} d s$, where $\vec{f}=4 x z i-y^{2} j+y z k$ and s is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.
(05 Marks)
b. A heavy cable hangs freely under the gravity between two fixed points. Show that the shape of the cable is a Catenary.
(06 Marks)
c. Find the extermal of the functional $\int_{0}^{\pi / 2}\left\{\left(y^{1}\right)^{2}-y^{2}+4 y \cos x\right\} d x$, give that $y=0=y(\pi / 2)$.
(05 Marks)

Third Semester B.E. Degree Examination, June/July 2019
Analog Electronics
Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.

Module-1

1 a. Derive the expression for $Z_{i n}, Z_{0}, A_{v}$ and A_{I} for voltage divider bias $C E$ amplifier with R_{E} unbypassed using re-model.
(10 Marks)
b. Write a note on hybrid π model.
(06 Marks)
a. For a emitter bias circuit with $\mathrm{R}_{\mathrm{B}}=470 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=3.3 \Omega, \mathrm{R}_{\mathrm{E}}=1.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{C}_{1}}=\mathrm{C}_{\mathrm{C}_{2}}=0.1 \mu \mathrm{~F}$, $h_{f e}=120, h_{i e}=1 k \Omega, h_{o e}=50 \mu \gamma$. Find $A_{l}, A_{V}, Z_{i n}$ and Z_{0} if R_{E} is unbypassed. Also write the hybrid model.
(08 Marks)
b. Derive the expression for $Z_{i n}, Z_{0}, A_{V}$ and A_{I} for common collector configuration amplifier using approximate hybrid model.
(08 Marks)

Module-2

3 a. Derive the expression for transconductance also relate I_{D} and g_{m}.
(06 Marks)
b. Obtain the expression for $Z_{i n}$ and A_{V} for a JFET common gate amplifier. Write the small signal model.
(10 Marks)

OR

4 a. For a common drain configuration amplifier if $\mathrm{R}_{\mathrm{G}}=2 \mu \Omega, \mathrm{R}_{\mathrm{S}}=2.2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$, $C_{C_{1}}=C_{C_{2}}=0.1 \mu \mathrm{~F}$. Find $Z_{i n}, Z_{0}$ and A_{V} given. $I_{D S S}=10 \mathrm{~mA}, V_{p}=-5 \mathrm{~V}, r_{d}=40 \mathrm{k} \Omega$, $\mathrm{V}_{\text {GSQ }}=-2.85 \mathrm{~V}$.
(06 Marks)
b. With a neat diagram, explain the construction and operation of D-MOSFET and E-MOSFET. Also write the drain and transfer characteristics.
(10 Marks)

Module-3

5 a. State Miller's theorem and also obtain the expression for input and output capacitances.
(08 Marks)
b. Derive the expressions for low frequency response of BJT amplifier due to input and output coupling capacitors and also due to bypass capacitor.
(08 Marks)

OR

6 a. Determine the higher frequency response of the amplifier circuit shown in Fig.Q6(a) below, also plot the graph.

b. Given $\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{GSS}}=80 \mathrm{~mA}, \quad \mathrm{~g}_{\mathrm{m}}=6 \mathrm{~ms}, \quad \mathrm{C}_{\mathrm{gs}}=4 \mathrm{pF}, \quad \mathrm{C}_{\mathrm{gd}}=2 \mathrm{pF}$.
(08 Marks)
Obtain the expression for overall tower and upper cutoff frequency of multistage amplifier.
(08 Marks)

Module-4

7 a. Prove that input and output impedances in voltage shunt feedback amplifier decreases.
(06 marks)
b. With the help of neat block diagram, deduce the conditions for sustained oscillations.
(04 marks)
c. Explain the important advantages of negative feedback.

OR

8 a. For a Wein bridge oscillator, if $R_{i}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{F}}=2.5 \mathrm{k} \Omega$. Find frequency of oscillation for $\mathrm{R}=2 \mathrm{k} \Omega$ and $\mathrm{C}=10 \mathrm{mF}$. Is oscillations sustained
(04 Marks)
b. Derive the expression for frequency of oscillation in Hartley oscillator with the help of neat circuit diagram.
(06 Marks)
c. Explain the construction and operation of UJT.

Module-5

9 a. Explain push pull amplifier with a neat circuit diagram. Show that its maximum conversion efficiency is 78.5%.
(12 Marks)
b. Write a note on class C amplifiers.

OR

10 a. Explain services and shunt voltage regulator.
(10 marks)
b. For the circuit shown in Fig.Q10(b) below, if peak base circuit is 1 mA . Calculate :
i) $\mathrm{P}_{0(a c)}$
ii) P in(do)
iii) $\eta(\%)$.
(06 Marks)

Fig.Q10(b)

\square

Third Semester B.E. Degree Examination, June/July 2019 Digital Electronics

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Write the switching equation for a digital circuit with four inputs and whose output is ' 1 ' if majority of its inputs are ' 1 '.
(04 Marks)
b. Place the following equations into proper canonical forms and write its decimal notations also :
i) $P=f(a, b, c)=a \bar{b}+a \bar{c}+b c$
ii) $Q=f(x, y, z)=(x+\bar{y})(\bar{y}+z)$.
(06 Marks)
c. Solve using k - map and implement using only NAND gates
$\mathrm{B}=\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,2,3,4,9)+\Sigma \mathrm{d}(10,11,12,13,14,15)$.
(06 Marks)

OR

2 a. Solve using K Map
$\mathrm{A}=\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\pi(1,2,3,4,8,9,10,11,12,13,14,15)$
and implement using NOR gates only.
(06 Marks)
b. Simplify using Quine Mc Clusky method :
$D=f(a, b, c, d)=\Sigma(0,1,2,3,6,7,8,914,15)$
Show the prime implicant table to determine the EPIs.
(10 Marks)

Module-2

3 a. Design a combinational circuit that multiplies two 2 bit binary values, and produces 4 -bit product. Get the minterms for $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}. Simplify only for P_{2}.
(08 Marks)
b. Design a 4 to 16 decoder using 3 to 8 decoders (74LS138) only and realize the function:

$$
\begin{aligned}
& P=f(w, x, y, z)=\Sigma(1,4,8,13) \\
& Q=f(w, x, y, z)=\Sigma(2,7,13,14) .
\end{aligned}
$$

(08 Marks)
OR
4 a. Design a 2 bit magnitude comparator and get an expression for $\mathrm{A}<\mathrm{B}$ only, which is the minimal expression.
(08 Marks)
b. Explain a carry look ahead adder with a neat diagram and relevant expressions.
(08 Marks)

Module-3

5 a. Explain an SR latch using NOR gates with circuit diagram function table and timing diagram.
(06 Marks)
b. Explain a positive edge triggered D flip flop with circuit diagram, function table and timing diagram.
(10 Marks)

6 a. What is race around? How is it overcome in master slave JK F/F. Explain MS JK with relevant circuit diagram, function table.
(10 Marks)
b. Derive the characteristics equation for:
i) $\mathrm{SR} F / \mathrm{F}$
ii) JK F/F
iii) D F/F
iv) T F/F.
(06 Marks)

Module-4

7 a. Given an universal shift register, sketch its diagram only for left shift operates and explain its working.
(08 Marks)
b. What is a twisted ring counter? Sketch its diagram and explain its counting sequence and also give the bits that determine a state uniquely.
(08 Marks)

OR

8 a. Design a model synchronous counter for the sequence, using a D flip-flop [Refer Fig.Q8(a)].

Fig.Q8(a)
(08 Marks)
b. Explain with net diagram, the counting sequence and timing diagram, the working of a 4 bit binary ripple counter, using positive edge triggered T flip flop.
(08 Marks)

Module-5

9 a. Draw and explain the Mealy and Moore sequential circuit models.
(06 Marks)
b. Analyze the following sequential circuit and draw its state diagram.[Refer Fig.Q9(b)]
(10 Marks)

Fig.Q9(b)

OR

10
a. Represent a Moore circuit notation of a JK flip-flop through state diagram and explain.
(06 Marks)
b. Design a modulo 8 synchronous counter with :
i) state diagram ii) state table iii) transition table iv) excitation table, kmap and logic diagram
(10 Marks)

Third Semester B.E. Degree Examination, June/July 2019

Network Analysis

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain E-shift and I-shift with an example.
b. Find the voltage across the capacitor of 10Ω reactance of the network shown in Fig.Q1(b) by loop current method.

Fig.Q1(b)

2 a. Determine the equivalent resistance between the terminals A and B in the network of Fig.Q2(a) using star-delta transformation.

(08 Marks)
b. Find the voltages at nodes 1,2,3 and 4 for the network shown in Fig.Q2(b) using nodal analysis.

Fig.Q2(b)

Module-2

3 a. State and explain superposition theorem.
(08 Marks)
b. Obtain Thevenin's equivalent circuit across A and B for the network shown in Fig.Q3(b).

Fig.Q3(b)
(08 Marks)

OR

(08 Marks)
4 a. State and explain Millman's theorem.
b. Find the value of Z_{L} in the circuit shown in Fig.Q4(b) using maximum power transfer theorem and hence the maximum power.

Fig.Q4(b)
(08 Marks)

Module-3

5 a. State and prove initial value theorem and final value theorem.
(08 Marks)
b. In the network shown in Fig.Q5(b), K is changed from position a to b at $t=0$. Solve for $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$, if $\mathrm{R}=100 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=0.25 \mu \mathrm{~F}$ and $\mathrm{V}=100 \mathrm{~V}$. Assume that the capacitor is initially uncharged.

(08 Marks)

OR
6 a. What is the significance of initial conditions? Write a note on initials and final conditions in basic circuit elements.
b. Find the Laplace transform of $(\mathrm{i}) \mathrm{f}(\mathrm{t})=\mathrm{u}(\mathrm{t})$
(ii) $f(t)=t$.
(08 Marks)

Module-4

7 a. Derive an expression for half power frequencies for a series resonant circuit,
(08 Marks)
b. For the network shown in Fig.Q7(b), find the value of L at which circuit resonates at a frequency of $600 \mathrm{rad} / \mathrm{sec}$.

Fig.Q7(b)
(08 Marks)

OR

8 a. Obtain the expression for the resonant frequency and the dynamic impedance of a parallel resonant circuit.
(08 Marks)
b. An RLC series resonant circuit draws a maximum current of 10 Amps , when connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the Q-factor is 5, find the parameters of the circuit.
(08 Marks)

Module-5

9 a. Derive the Y-parameters in terms of ABCD parameters.
(08 Marks)
b. Obtain the h-parameters for the circuit shown in Fig.Q9(b).

Fig.Q9(b)
(08 Marks)

OR

10 a. Express h-parameters interms of z-parameters.
(08 Marks)
b. Find the y-parameters for the circuit shown in Fig.Q10(b). The use parameter relationships to find h-parameter.

Fig.Q10(b)
(08 Marks)

Third Semester B.E. Degree Examination, June/July 2019
Electronic Instrumentation
Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain different types of static errors of a measuring instrument.
(08 Marks)
b. What is a thermocouple? Explain different type of thermocouple.
(08 Marks)

OR

2 a. Explain the operation of true RMS voltmeter with diagram.
(08 Marks)
b. Two different voltmeters are used to measure the voltage across R_{b} in the circuit of Fig.Q2(b)

Fig. Q2(b)

The meters are as follows:
meterl: $\mathrm{S}=1 \mathrm{k} \Omega / \mathrm{V} \quad$ Range $=10 \mathrm{~V}$
meter2
$: S=20 \mathrm{k} \Omega / \mathrm{V}$ Range $=10 \mathrm{~V}$
Calculate :
(i) The voltage across R_{b} without any meter across it.
(ii) The voltage across R_{b} when meter 1 is used.
(iii) The voltage across R_{6} when meter 2 is used.
(iv) Error in the voltmeters.
(08 Marks)

Module-2

3 a. Describe the principle operation of successive approximation DVM.
(08 Marks)
b. Explain the operation of a microprocessor based instrument with a block diagram. (08 Marks)

OR

4 a. Explain the working of Dual-Slope integrating type DVM with the block diagram. (08 Marks)
b. With the help of diagram, explain the operation of a Digital Tachometer.
(08 Marks)

Module-3

5 a. Draw the block diagram of CRT and explain the function of each block.
(08 Marks)
b. Explain the principle of operation of square and pulse generator with its block diagram.
(08 Marks)
OR
6 a. Explain the operation of a digital read out oscilloscope with block diagram. (08 Marks)
b. Describe the operation of a AF sine and square wave generator with diagram.
(08 Marks)

Module-4

7 a. Explain the operation of an Analog pH meter using hydrogen electrode.
(08 Marks)
b. Derive the balance equation for Wheatstone's bridge and mention its advantages and limitations.
(08 Marks)

OR

8 a. Explain Wagner's earth connection.
(08 Marks)
b. Explain the principle operation of a field strength meter with its block diagram.

Module-5

9 a. Explain the operation of a Resistive Position Transducer with block diagram. (08 Marks)
b. Explain construction and principle operation of LVDT.

OR

10 a. Explain the operation of a resistance thermometer and mention its advantages and limitations.
(08 Marks)
b. Write note on:
(i) Piezoelectric Transducers
(ii) Strain Gauges.
(08 Marks)

Third Semester B.E. Degree Examination, June/July 2019 Engineering Electromagnetics

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Four point charges each $20 \mu \mathrm{c}$ are on $\mathrm{x}-\mathrm{y}$ axes at $\pm 4 \mathrm{~m}$. find the force on a $100 \mu \mathrm{c}$ point charge at $(0,0,3) \mathrm{m}$.
(06 Marks)
b. Define electric field intensity ($\overrightarrow{(E)}$ and using Coulomb's law derives the expression for \vec{E} due to a point charge.
(04 Marks)
c. A line charge of density $\rho_{\ell}=24 \mathrm{nc} / \mathrm{m}$ is located in free space on the line $\mathrm{y}=1, \mathrm{z}=2$. Find electric filed intensity \vec{E} at $P(6,-1,3)$.
(06 Marks)

OR

2 a. Derive an expression for Electric field Intensity \vec{E} due to an infinite line charge of density $\rho_{\text {, }} \mathrm{c} / \mathrm{m}$.
(08 Marks)
b. A point charge of $6 \mu \mathrm{c}$ is located at origin and a uniform line charge of density $180 \mathrm{nc} / \mathrm{m}$ lies along x-axis,
i) Find electric flux density D at $(1,2,4)$
ii) Calculate the total electric flux leaving the surface of a sphere of 4 m radius centered at origin.
(08 Marks)

Module-2

3 a. A charge of Q coulombs is uniformly distributed throughout the volume of a sphere of radius ' R ' meters. Using Gauss law Find electric field intensity ' E ' everywhere. Plot the variation of E with radial distance.
(08 Marks)
b. Given that $D=\frac{5 r^{2}}{4} a_{r}$ in spherical co-ordinates evaluate both sides of Divergence Theorem for the volume enclosed between $r=1 m$ and $r=2 m$.
(08 Marks)

OR

4 a. Find the work done in moving a $5 \mu \mathrm{c}$ point charge from origin to $\mathrm{p}(2,-1,4)$ through $\mathrm{E}=2 x y z a x+x^{2} z a_{y}+x^{2} y a_{z} v / m$ via the path
i) Straight line segment $(0,0,0)$ to $(2,0,0)$ to $(2,-1,0)$ to $(2,-1,4)$
ii) Straight line $x=-2 y, z=2 x$.
(10 Marks)
b. Given potential function $V=50 x^{2} y z+20 y^{2} V$ in free space find
i) Voltage at $\mathrm{p}(1,2,-3)$
ii) E at P
iii) a_{N} at P

Module-3

5 a. Using Laplace Equation derive the expression for capacitance of co-axial cylindrical capacitor. Assume the potential is a function of ' ρ ' only. The boundary condition are $\mathrm{V}=0$ at $\rho=\mathrm{b}$ and $\mathrm{V}=\mathrm{V}_{0}$ at $\rho=\mathrm{a}(\mathrm{b}>\mathrm{a})$
(08 Marks)
b. Conducting planes at $\phi=10^{\circ}$ and $\phi=0^{\circ}$ in cylindrical co-ordinates have voltages of 75 V and 0 V respectively. Obtain the expression for Electric flux density ' D ' in the region between the planes which contains a material for which $\mathrm{E}_{\mathrm{r}}=1.65$.
(08 Marks)

OR

6 a. Using Biot - Savart's law derive an expression for magnetic field intensity ' H ' due to an infinite current carrying conductor at any point P.
(08 Marks)
b. In cylindrical co-ordinates magnetic field $H=\left(2 \rho-\rho^{2}\right)$ a $\phi A / m$. for $0 \leq \rho \leq I$.
i) Determine current density ' J'
ii) What total current passes through a surface $z=0,0 \leq \rho \leq 1$.
(08 Marks)

Module-4

7 a. Derive Lorentz force equation for a moving charge in both electric and magnetic fields.
(04 Marks)
b. The point charge $\mathrm{Q}=18 \mathrm{nc}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction $\mathrm{q}_{\mathrm{v}}=0.60 \mathrm{a}_{\mathrm{x}}+0.75 \mathrm{a}_{\mathrm{y}}+0.30 \mathrm{a}_{\mathrm{z}}$. Calculate magnetic force exerted on the charge by
i) $B=-3 a x+4 a y+6 a z M T$
ii) $E=-3 a x+4 a y+6 a z K V / m$
(06 Marks)
c. The magnetization in a magnetic material for which $\chi_{\mathrm{m}}=8$ is given in a certain region as $150 z^{2} a_{x} A / m$. At $z=4 c m$, find the magnitude of J and J_{b}.
(06 Marks)

8 a. Derive the expression for boundary conditions for magnetic flux density B, magnetic field intensity H and magnetization M for both normal and tangential field.
(08 Marks)
b. Let $\mu_{1}=5 \mu \mathrm{H} / \mathrm{m}$ in region A where $\mathrm{x}<0$ and $\mu_{2}=20 \mu \mathrm{H} / \mathrm{m}$ in region B where $\mathrm{x}>0$. If there is a surface current density $K=150 a_{y}-200 a_{z} A / m$ at $x=0$ and if $\mathrm{H}_{\mathrm{A}}=300 \mathrm{a}_{\mathrm{x}}-400 \mathrm{a}_{\mathrm{y}}+500 \mathrm{a}_{\mathrm{z}} \mathrm{A} / \mathrm{m}$ find (i) $\left|\mathrm{H}_{\mathrm{tA}}\right|$ (ii) $\left|\mathrm{H}_{\mathrm{NA}}\right| \quad$ (iii) $\left|\mathrm{H}_{\mathrm{tB}}\right|$ (iv) $\left|\mathrm{H}_{\mathrm{NB}}\right| \quad$ (08 Marks)

Module-5

9 a. What was the inconsistency of Ampere's law with continuity equation? How was it modified by Maxwell?
(06 Marks)
b. Show that the displacement current in the dielectric of parallel plate capacitor is equal to conduction current between the two plates.
(04 Marks)
c. Given $E=E_{m} \operatorname{Sin}(w t-\beta z) a_{y} V / m$ in free space find, D, B and H.
(06 Marks)

OR

10 a. Show that the intrinsic impedance defined as $\eta=\frac{|\mathrm{E}|}{|\mathrm{H}|}$ is equal to $\sqrt{\frac{\mu}{\epsilon}}$ for a perfect dielectric and hence prove that for free space $\eta=377 \Omega$.
(08 Marks)
b. A wave propagation in a lossless dielectric has the components
$\mathrm{E}=500 \operatorname{Cos}\left(10^{7} \mathrm{t}-\beta \mathrm{z}\right) \mathrm{a}_{\mathrm{x}} \mathrm{V} / \mathrm{m}$
$H=1.1 \operatorname{Cos}\left(10^{7} t-\beta z\right) a_{y} A / m$
If the wave is travelling at $\mathrm{v}=0.5 \mathrm{C}$, where ' C ' is velocity of light in free space find $\mu_{\mathrm{r}}, \epsilon_{\mathrm{r}}, \beta, \lambda$.
(08 Marks)

CBCS SCHINM

USN

Third Semester B.E. Degree Examination, June/July 2019

Additional Mathematics - I
Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Express the complex number $\frac{(1+\mathrm{i})(1+3 \mathrm{i})}{1+5 \mathrm{i}}$ in the form $\mathrm{a}+\mathrm{i} \mathrm{b}$.
(05 Marks)
b. Find the modulus and amplitude of $1+\cos \theta+i \sin \theta$.
(05 Marks)
c. Show that $(a+i b)^{n}+(a-i b)^{n}=2\left(a^{2}+b^{2}\right)^{n / 2} \cos \left(n \tan ^{-1}\left(\frac{b}{a}\right)\right)$
(06 Marks)

OR

2 a. If $\vec{A}=i-2 j+3 k$ and $\vec{B}=2 i+j+k$, find the unit vector perpendicular to both \vec{A} and \vec{B}.
(05 Marks)
b. Show that the points $-6 i+3 j+2 k, 3 i-2 j+4 k, 5 i+7 j+3 k$ and $-13 i+17 j-k$ are coplan.
(05 Marks)
c. Prove that $[\vec{B} \times \vec{C}, \vec{C} \times \vec{A}, \vec{A} \times \vec{B}]=[\vec{A} \overrightarrow{B C}$
(06 Marks)

Module- 2

3 a. Find the $\mathrm{n}^{\text {th }}$ derivative of $\frac{\mathrm{x}}{(\mathrm{x}-1)(2 \mathrm{x}+3)}$.
(05 Marks)
b. Find the angle of intersection of the curyes $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
(05 Marks)
c. Obtain the Maclourin series expansion of the function $\sin x$ upto the term containing x^{4}.
(06 Marks)

OR

4 a. Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2 u \log u$ where $\log u=\frac{x^{3}+y^{3}}{3 x+4 y}$.
(05 Marks)
b. If $u=f(x-y, y-z, z-x)$ prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
(05 Marks)
c. If $u=x+3 y^{2}-z^{3}, v=4 x^{2} y z, w=2 z^{2}-x y$, evaluate $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1,-1,0)$.
(06 Marks)

Module-3

5 a. Obtain the reduction formula for $\int \sin ^{n} x d x$. Hence evaluate $\int_{0}^{\pi / 2} \sin ^{n} x d x$.
(05 Marks)
b. Evaluate $\int_{0}^{n} \frac{x^{6}}{\left(1+x^{2}\right)^{7}} d x$.
(05 Marks)
c. Evaluate $\int_{-1}^{1} \int_{0}^{z+z} \int_{x-z}^{x+z}(x+y+z) d x d y d z$.
(06 Marks)

OR

6 a. Evaluate $\int_{0}^{2 a} \int_{0}^{x^{2} / 4 a} x y d y d x$.
(05 Marks)
b. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x+y+z) d x d y d z$.
(05 Marks)
c. Evaluate $\int_{0}^{a} \frac{x^{7} d x}{\sqrt{a^{2}-x^{2}}}$ by using reduction formula.
(06 Marks)

Module-4

7 a. A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+3$ where t is the time. Find the components of velocity and acceleration at $\mathrm{t}=1$ in the direction of $\mathrm{i}+\mathrm{j}+3 \mathrm{k}$.
b. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$ where $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
(05 Marks)
c. Prove that $\operatorname{div}(\operatorname{curlF})=0$.

OR

8 a. Find the directional derivative of $f(x, y, z)=x y^{3}+y z^{3}$ at $(2,-1,1)$ in the direction of $i+2 j+2 k$.
(08 Marks)
b. Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
(08 Marks)

Module- 5

9 a. Solve $\left(x^{2}-y^{2}\right) d x-x y d y=0$.
(05 Marks)
b. Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+(x+\log x-x \sin y) d y=0$.
(05 Marks)
c. Solve $\frac{d y}{d x}-\frac{y}{1+x}=e^{3 x}(x+1)$.
(06 Marks)

OR

10 a. Solve $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$
(08 Marks)
b. Solve $(3 y+2 x+4) d x-(4 x+6 y+5) d y=0$.
(08 Marks)

